Volume 4, Issue 5, October 2016, Page: 204-216
Optimal Control of a Model of Gambiense Sleeping Sickness in Humans and Cattle
Ndondo Mboma Apollinaire, Faculty of Sciences, Regional Center for Doctoral Education in Mathematics and Computer Science, University of Kinshasa, Kinshasa, D. R. Congo
Walo Omana Rebecca, Faculty of Sciences, Regional Center for Doctoral Education in Mathematics and Computer Science, University of Kinshasa, Kinshasa, D. R. Congo
Maurice Yengo Vala-ki-sisa, Faculty of Sciences, Department of Mathematics and Computer Science, University of Kinshasa, Kinshasa, D. R. Congo
Received: Jul. 5, 2016;       Accepted: Jul. 18, 2016;       Published: Aug. 31, 2016
DOI: 10.11648/j.ajam.20160405.12      View  2570      Downloads  114
Abstract
Human African trypanosomiasis (HAT) generally known as sleeping sickness is a fatal parasitic disease which appears mostly in sub-Saharan Africa, threatening millions of people and animals. Sleep disorders are a major feature of the (most) advanced stage of the disease, when the central nervous system is affected. In the absence of treatment, the outcome is always fatal. The parasite is transmitted to humans or animals through the bite of a tsetse fly previously infected by humans or animals carrying the parasite. We look for different scenarios to control the epidemic by integrating in our model terms that model the different control techniques.
Keywords
Trypanosoma Brucei Gambiense, Sleeping Sickness, Glossina, Optimization, Control, Modeling, Optimal Control
To cite this article
Ndondo Mboma Apollinaire, Walo Omana Rebecca, Maurice Yengo Vala-ki-sisa, Optimal Control of a Model of Gambiense Sleeping Sickness in Humans and Cattle, American Journal of Applied Mathematics. Vol. 4, No. 5, 2016, pp. 204-216. doi: 10.11648/j.ajam.20160405.12
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
W. H. Fleming and R. W. Rishel. Deterministic and stochastic optimal control. Springer-Verlag, New York, 1975.
[2]
Kermack WO., Mc Kendrick AG. (1927). Contributions to the mathematical theory of epidemics-I. Proc Roy Soc Lond A, 115: 700-721.
[3]
Anderson R. M& May R. M, The population biology of infectious diseases. Springer Verlag. Berlin, 1882, 368 p.
[4]
Artzrouni Gouteux J. P. A compartiment model of vector-borne diseases: application to sleeping sickness in central Africa. Journal of Biological Systems, 1996a, 4; 459-477.
[5]
Artzrouni Gouteux J. P. Control strategies for sleeping sickness in Central Africa: a model based approach. Tropical Medecine and International Health, 1996b, I, 753-764.
[6]
O. Diekmann, J. A. P Hesterbeek and J. A. J Metz, On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous population, journal of mathematical Biology 28, 365-382 (1990).
[7]
P. Van Den Driessche, James Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180 (2002) 29-48.
[8]
D. Moulay, M. A Aziz-Alaoui, M. Cadival The chikungunya disease: Modeling, vector and transmission global dynamics. Math. Biosciences 229 (2011) 50-63.
[9]
D. Moulay, M. A Aziz-Alaoui, H. D. Kwon Optimal control of chikungunya disease: Larvae reduction treatment and prevention. Math. Biosciences and Engineering Vol 9. pp 369-393.
[10]
Kat S Rock, Chris M Stone, Ian M Hastings, Matt J Keeling, Steve J Torr, and NakulChitnis. Mathematical models of human African trypanosomiasis epidemiology. Advances in Parasitology, 87, 2015.
[11]
R. V Gamkrelidze: Discovery of the Maximum Principle; Journal of dynamical and control systems, Vol 5, No 4, 1999, 437-451.
[12]
Castellani, A. (1903). On the discovery of a species of Trypanosoma in the cerebrospinal fluid of cases of sleeping sickness. Proceedings of the Royal Society 71, 501-508.
[13]
Bruce, D. (1896). Further report on the tsetse fly disease or nagani in Zululand. Harrison and Sons, London.
[14]
Bruce, D., Hamerton, A. E., Bateman, H. R. and Mackie, F. P. (1909). The development of Trypanosoma gambiense in Glossinapalpalis. Proceedings of the Royal Society (series B) 81, 405-414.
[15]
Leak, S. G. A. (1998) Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. CABI Publishing. Oxford and New York. 568 pp.
[16]
H. L. Smith. The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, 1995.
[17]
O. Diekmann, J. A. P Hesterbeek and J. A. J Metz, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and interpretation, first ed. Wiley, 2000.
[18]
P. Van Den Driessche, James Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180 (2002) 29-48.
[19]
H. Hethcote, (2000). The mathematics of infectious diseases. SIAM Rev. 42 (2000) 599.
[20]
Andreas K Lindner and Gerardo Priotto. The unknown risk of vertical transmission in sleeping sickness a literature review. PLoS Neglected Tropical Diseases, 4 (12): e 783, 2010.
[21]
O. Diekmann, J. A. P Hesterbeek and J. A. J Metz, On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous population, journal of mathematical Biology 28, 365-382 (1990).
[22]
Z. Feng, V. Hernandez, Competitive exclusion in a vector-host model for the dengue fever, Journal of Mathematical Biology 35 (1997) 523.
[23]
G. Ngwa, W. Shu, A Mathematical model for endemic malaria with variable human and mosquito population, Mathematical and Computer Modeling 32 (2000) 747.
[24]
A. Tran, M. Raffy, On the dynamics of dengue epidemics from large-scale information, Theoretical Population Biology 69 (2006) 3.
[25]
Y. Dumont, F. Chiroleu, C. Domerg, On a temporal model for the Chikungunya disease: Modeling, theory and numerics, Mathematical Biosciences 213 (1) (2008) 80.
[26]
L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci 150 (2) (1998) 131.
[27]
M. Derouich, A. Boutayeb, E. Twizell, A model of dengue fever, Bio Medical Engineering 2 (1) (2003) 4.
[28]
L. Esteva, C. Vargas, A model for dengue disease with variable human population, Journal of Mathematical Biology 38 (3) (1999) 220.
[29]
Y. Dumont, F. Chiroleu, Vector Control for the Chikungunya disease, Mathematical Biosciences and Engeneering 7 (2010) 313.
[30]
R. A. Erickson, S. M. Presley, L. J. Alle, K. R. Long, S. B. Cox, A stage-structured, Aedes albopictus population model, Ecol. Model. 221 (9) (2010) 1273.
[31]
M. Y. Li, J. S. Muldownez, Global Stability for the SEIR model in epidemiology, Math. Biosci. 125 (2) (1995) 155.
[32]
H. L. Smith, Systems of differential equations which generate an order preserving flow. A survey of results, SIAM Rev. 30 (1) (1988) 87.
[33]
J. K. Hale, Ordinary Differential Equations, Wiley Inter-science, 1969.
[34]
J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mount. J. Math. 20 (4) (1990) 857.
[35]
D J Rogers. A general model for the African trypanosomiases. Parasitology, 97 (Pt 1): 193-212, 1988.
[36]
M. Artzrouni, Gouteux J. P. A compartiment model of vector-borne diseases: application to sleeping sickness in central Africa. Journal of Biological Systems, 1996a, 4; 459-477.
[37]
M. Artzrouni, Gouteux J. P. Persistence et résurgence de la maladie du sommeil `a Trypanosoma brucei gambiense dans les foyers historiques. Approche biomath´ematique d’une ´enigme ´epid´emiologique C. R. Acad. Sci. Paris, Sciences de la vie/ Life Sciences 323 (2000) 351-364.
[38]
T. Madsen, D. I. Wallace, and N. Zupan. Seasonal uctuation in tsetse y populations and human African trypanosomiasis: A mathematical model. BIOMAT 2012, pages 56-69, 2013.
[39]
A. M. Ndondo, J. M. W. Munganga, J. N. Mwambakana, C. M. Saad-Roy, P. van den Driessche & R.O. Walo (2016) Analysis of a Model of gambiense sleeping sickness in human and cattle, Journal of Biological Dynamics, 10: 1, 347-365.
[40]
S. Funk, H. Nishiura, H. Heesterbeek, W. J. Edmunds, and F. Checchi. Identifying transmission cycles at the human-animal interface: the role of animal reservoirs in maintaining gambiense human African trypanosomiasis. PLoS Computational Biology, 9 (1), 2013.
[41]
Z. Shuai and P. van den Driessche. Global stability of infectious disease models using Lyapunov functions. SIAM Journal on Applied Mathematics, 73 (4): 1513-1532, 2013.
[42]
H. L. Freedman, S. Ruan, and M. Tang. Uniform persistence and ows near a closed positively invariant set. Journal of Dynamics and Differential Equations, 6 (4): 583-600, 1994.
[43]
M. Y. Li, J. R. Graef, L. Wang, and J. Karsai. Global dynamics of a SEIR model with varying total population size. Mathematical Biosciences, 160: 191-213, 1999.
[44]
D. Kajunguri, J. W. Hargrove, R. Oufki, J. Y. T. Mugisha, P. G. Coleman, and S. C. Welburn, Modeling the use of insecticide-treated cattle to control tsetse and Trypanosoma brucei rhodiense in a multi-host population, Bull. Math. Biol. 76 (2014), pp. 673-696.
[45]
B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10-49.
[46]
B. M. Adams, H. T. Banks, H.-D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Mathematical Biosciences and Engineering, 1 (2004), 223-241.
[47]
K. Blayneh, Y. Cao and H.-D. Kwon, Optimal control of vector-borne disease: Treatment and prevention, Discrete and Continuous Dynamical Systems Series B, 11 (2009), 587-611.
[48]
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems Series B, 2 (2002), 473-482.
[49]
L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, The Mathematical Theory of Optimal Processes, A Pergamon Press Book, The Macmillan Co., New York, 1964.
Browse journals by subject